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Objective: Most aggressive cancers demonstrate a positive positron emission tomographic (PET)
result using 18F-2-fluoro-2-deoxyglucose (FDG), reflecting a glycolytic phenotype. Inhibiting
insulin secretion provides a method, consistent with published mechanisms, for limiting cancer
growth.
Methods: Eligible patients with advanced incurable cancers had a positive PET result, an Eastern
Cooperative Oncology Group performance status of 0 to 2, normal organ function without diabetes
or recent weight loss, and a body mass index of at least 20 kg/m2. Insulin inhibition, effected by
a supervised carbohydrate dietary restriction (5% of total kilocalories), was monitored for macro-
nutrient intake, body weight, serum electrolytes, b-hydroxybutyrate, insulin, and insulin-like
growth factors-1 and -2. An FDG-PET scan was obtained at study entry and exit.
Results: Ten subjects completed 26 to 28 d of the study diet without associated unsafe adverse
effects. Mean caloric intake decreased 35 � 6% versus baseline, and weight decreased by
a median of 4% (range 0.0–6.1%). In nine patients with prior rapid disease progression, five
with stable disease or partial remission on PET scan after the diet exhibited a three-fold higher
dietary ketosis than those with continued progressive disease (n ¼ 4, P ¼ 0.018). Caloric intake
(P ¼ 0.65) and weight loss (P ¼ 0.45) did not differ in those with stable disease or partial
remission versus progressive disease. Ketosis was associated inversely with serum insulin
levels (P ¼ 0.03).
Conclusion: Preliminary data demonstrate that an insulin-inhibiting diet is safe and feasible in
selected patients with advanced cancer. The extent of ketosis, but not calorie deficit or weight loss,
correlated with stable disease or partial remission. Further study is needed to assess insulin
inhibition as complementary to standard cytotoxic and endocrine therapies.
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Introduction

Persistent aerobic glycolysis is a feature of many cancers,
although not as universal as originally proposed by Warburg [1].
A glycolytic phenotype nonetheless can be identified in diverse
malignancies [2,3]. Overexpression of the insulin-independent
glucose transporter-1 (GLUT-1) [4–6] and hexokinase [7,8]
facilitates the increased glucose uptake needed to supply the
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energy needs of these cancers. 18F-2- fluoro-2-deoxyglucose
(FDG) undergoes a similar transport and phosphorylation as
glucose, its congener. The FDG uptake can be demonstrated on
positron emission tomographic (PET) scans of glycolytic cancers,
providing a useful tool for the diagnosis, staging, prognosis, and
management of numerous aggressive malignancies [9–13].

The role of insulin in cancer is currently of research interest,
and hyperinsulinemia has been described as a risk factor for
many cancers [14–17]. Conversely, we proposed previously that
insulin inhibition (INSINH), by altering the metabolic microen-
vironment, may inhibit many human cancers evolutionarily
adapted to a markedly different, specifically hyperinsulinemic,
state [18]. We also previously reported on the growth and
adenosine triphosphate inhibition in multiple aggressive cancer
cell lines when grown in supplemental ketone body medium
that are not seen in control fibroblasts [19]. The hypothesis also
bears on recent interest in calorie restriction because studies by
Kalaany and Sabatini [21] and Sengupta et al. [22], for example,
have shown that calorie restriction shares many of the down-
stream signaling pathways of the insulin receptor.

Mechanistically, the binding of insulin to the insulin receptor
activates the mitogen-activated protein (MAP) kinase and phos-
phatidylinositol-3-kinase pathways in normal cells and different
tumor cell lines [22]. Other insulin receptor ligands, including
insulin-like growth factor-1 (IGF-1) and IGF-2, share extensive
homology and downstream signaling pathways with insulin, but
havemore potent mitogenic and antiapoptotic effects. In addition
to the insulin receptor, IGF-1 receptor, a transmembrane receptor
for IGF-1, is upregulated in different human cancers. Ligand
binding to the IGF-1 receptor activates its tyrosine kinase, result-
ing in downstream signaling cascades in the insulin receptor
substrate-1(IRS-1)/phosphatidylinositol-3-kinase (PI3K)/protein
kinase B (Akt)/mammalian target of rapamycin (mTOR) and Ras/
Raf/mitogen-activated protein kinase/extracellular signal-
regulated kinase (ERK) pathways, ultimately promoting prolifer-
ation, survival, transformation, metastases, and angiogenesis in
many cancers, but especially colorectal and breast cancers.
Conversely, decreased insulin secretion induces metabolic and
molecular responses, including the inhibitionanddownregulation
of the mammalian target of rapamycin, phosphatidylinositol-3-
kinase/Akt, hypoxia-inducible factor (HIF)-1a, fatty acid syn-
thase, and vascular endothelial growth factor (VEGF) and the
upregulation of adenosine monophosphate–activated protein
kinase (AMPK), all proposedcancer therapy targets [7,20,23–45]of
drugs such as rapamycin, wortmannin, bevacizumab, metformin,
among many others.

Insulin secretion is inhibited most simply by restricting
carbohydrate (CHO) ingestion, thus decreasing the dietary
sources of glucose, the principal secretagogue for pancreatic
insulin release [46–49]. The regulation of GLUT-1 translocation
by insulin levels has been reported in cancer [50], which can
decrease the nutrient supply for glucose-dependent cancers
[7,20,23–45]. Ketosis alone and the increased lipolysis that
accompany the disinhibition by insulin have been reported to
inhibit cancer growth [18,19,51–57], with recent studies
demonstrating in vitro [19] and in vivo [54,58–61] mechanisms.
Further, the adverse effects of CHO-restricted diets have not been
demonstrated in normal subjects [62], diabetics [49,63], or
individuals seeking weight loss in studies ranging from 3 mo to
2 y [64–68] or in patients with cancer over a duration of a 3 mo
[69]. Humans with cancer have exhibited a normal nitrogen
balance after 1 wk of dietary CHO restriction [52].

Dietary change alone is unlikely to be useful as a cancer
therapy, but adding current or developing metabolic, endocrine,
and molecular treatments can plausibly increase its effective-
ness. Therefore, we initiated a prospective safety and feasibility
trial of an INSINH CHO-restricted diet in patients with advanced
glucose-dependent PET-FDG–positive cancers. The diets were
designed to be eucaloric and weight stable. A change in FDG
tumor uptake on a PET scan was chosen as a surrogate marker of
a biologic effect [70].

Materials and methods

Eligibility criteria

Eligible patients had incurable, advanced cancer with FDG-avid tumors
detected by PET scanning, with progressive disease after at least two conven-
tional anticancer treatments. The exclusion criteria included a body mass index
lower than 20 kg/m2, a weight loss exceeding 5% of body weight within 3 mo of
enrollment, a history of diabetes on hypoglycemic medications, intestinal
obstruction, and abnormal liver function (increase in total or direct bilirubin to
1.1 or 0.3 mg/dL, respectively, and aspartate or alanine aminotransferase levels
above the normal range established for our laboratory), renal function (serum
creatinine required�1.7mg/dL), and congestive heart failure. Chemotherapy was
discontinued for at least 2 wk before trial initiation. The protocol was reviewed
and approved by the committee on clinical investigation at the Albert Einstein
College of Medicine, and all patients provided written informed consent (http://
www.clinicaltrials.gov/NCT00444054, Reduced Carbohydrates in Aggressive
Resistant Tumors [RECHARGE] trial).

Study interventions

Investigatorsmetwith the subjects to obtain a detailed nutritional historyand
to instruct them in how to use the symptom and diet intake forms that were to be
returned at the weekly clinical research center visits. A “welcome packet”
provided written menus, CHO limits, and samples of CHO-restriction products.
Participantswere responsible for the food purchase and preparation, requiring an
accurate pre-enrollment assessment of compliance. Therefore, a 2- to 3-d trial diet
tested the subjects’ suitability and aimed to decrease subsequent dietary excur-
sions during the INSINH trial. If an adequate compliancewas achieved, whichwas
evaluated by a food recall, a baseline PET scanwas scheduled. The CHO intakewas
targeted at no higher than 5% of total energy, a level at which ketonemia could be
used to assess the strict compliance and metabolic effects [18]. Increased fat and
protein ingestion was encouraged to attempt to maintain a stable calorie intake
andweight. History, physical examination, bloodwork, standardized bodyweight
(Detecto mechanical scale model 400, Detecto, Webb City, MO, USA), and food
recall records were obtained at the baseline and weekly clinical research center
visits. Symptoms were recorded and treated, and nutritional errors were cor-
rected. Adverse events were recorded and graded by the National Cancer Insti-
tute’s Common Terminology Criteria for Adverse Events 3.0 criteria (http://ctep.
cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_30).
Biweekly telephone calls permitted the ongoing review of patients’ progress. The
Harris–Benedict equation [71], modified to account for each patient’s activity
level, was used to calculate the predicted daily caloric requirements for weight
maintenance. Subjects choosing to remain on a low-CHO diet at the trial’s
conclusion were offered continued consultative nutritional advice; however, this
choice was decided by the referring physician and the patient.

FDG-PET computed tomographic scans

Scans were performed in the Montefiore Medical Center Nuclear Medicine
Department’s ambulatory imaging facility on a Gemini 2-slice PET scanner (the
first two patients), replaced in 2007 by a Gemini TF 64 slice PET/computed
tomograph (Philips of North America, Andover, MA, USA), permitting low-dose
computed tomographic acquisition after the PET scan. Patients were injected
intravenously with FDG 10 mCi (370 MBq) in a quiet, darkened room followed at
approximately 60 min by scanning from the skull vertex to the midthigh.
Reconstructed coronal, sagittal, and transverse images and three-dimensional
projections were displayed. Response was defined using the European Organi-
zation for Research and Treatment of Cancer (EORTC) criteria to distinguish
progressive disease (PD; increased tumor uptake by>25% or new lesions), partial
remission (PR; decreased uptake by �15%), stable disease (SD; no new lesions
and change in uptake within a 25% increase or a 15% decrease), and complete
remission (no detectable disease) [72]. Postdietary FDG-PET scans were per-
formed on the final trial day, using the same PET scanner and similar image
timing between studies. Such methods permit FDG standardized uptake value
changes of 10% to be statistically significant (P < 0.05) for initial standardized
uptake value measurements of at least 5 [73,74]. The FDG tumor uptake was
evaluated qualitatively in clinical reports.

http://www.clinicaltrials.gov/NCT00444054
http://www.clinicaltrials.gov/NCT00444054
http://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_30
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Table 1
Baseline patient demographics

Patient Age (y)/Race Sex Cancer diagnosis Year* Prior chemotherapy
courses

Glucose (mg/dL) Creatine (mg/dL) Weight (kg) BMI (kg/m2)

1 61/AA F breast 4 5 107 1.3 77.6 29.3
2 53/H F fallopian tube 5 5 93 0.9 63.0 25.0
3 73/C F breast 14 0y 114 0.8 62.8 28.0
4 70/AA F colorectum 5 4 87 1.2 73.0 28.5
5 69/AA M lung 5 5 90 1.0 77.1 27.5
6 72/C M esophagus 2 6 107 1.0 103.4 29.3
7 52/As F colorectum 5 4 104 0.5 46.3 20.9
8 61/C M colorectum 6 6 95 1.1 69.9 22.7
9 64/AA F ovary 5 10 100 1.7 98.0 34.9

10 54/C F lung 4 8 93 0.9 68.0 26.1
Mean � SEM 62.9 � 2.5 N/A N/A 5.5 � 1.0 5.3 � 0.8 99 � 2.8 1.0 � 0.1 73.0 � 5.3 27.2 � 1.2

AA, African American; As, Asian/Pacific; BMI, body mass index; C, Caucasian; F, female; H, Hispanic; M, male; N/A, not applicable
* Number of years since cancer was first diagnosed until the start of the Reduced Carbohydrates in Aggressive Resistant Tumors Trial.
y Patient had self-described, slowly advancing disease over a duration of 14 y, refusing all standard medical therapies despite chest wall metastases documented 5 y

before the insulin inhibition trial.
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Dietary compliance and laboratory evaluations

Written food-recall records were analyzed using Foodworks 11 (The Nutri-
tion Company, �2009, Long Valley, NJ, USA) to estimate energy intake and daily
gram macronutrient consumption. Baseline and weekly blood samplings were
performed after overnight fasting to determine serum concentrations of b-
hydroxybutyrate (BHB), insulin, IGF-1, and IGF-2, which were analyzed by the
Albert Einstein Clinical Research Center Core Laboratory. The ratio of dietary-
induced BHB to baseline BHB (relative ketosis) measured the extent of
systemic metabolic change induced by the INSINH diet. Blood drawn into spec-
imen tubes without preservatives or anticoagulants was centrifuged within 60
min at 4�C, and the serum was frozen immediately for a delayed batch assay.
After thawing, BHBwas assayed using an enzymatic UV/Vis assay (StanBio, Berne,
TX, USA) and analyzed on an Olympus AU400 (Olympus, Dallas, TX, USA)
chemistry auto-analyzer. IGF-1 and IGF-2 were measured by sandwich enzyme-
linked immunosorbent assays (American Laboratory Products Company, Salem,
NH, USA). Insulin was measured using a commercially available AlphaLISA
sandwich assay (Perkin Elmer, Waltham, MA, USA). All sandwich assays were
measured on a Perkin Elmer EnSpire multimode plate reader. All other blood
specimens were submitted to Quest Diagnostics (Bronx, NY, USA).
Statistical evaluation

Statistical calculations were performed using PASW Statistics 18.0 (SPSS, Inc.,
Chicago, IL, USA).

For the comparison of group responses with the dietary intervention, serum
chemistries and calculated energy ingestion were evaluated at baseline and at
weekly intervals during the trial. The difference between the mean value of
chemistries during the trial and baseline value were compared between groups
using Student’s t tests for independent samples with equal variances. A similar
analysis was done for energy consumption. The difference between the final body
weight and initial body weight was compared between groups using Student’s t
tests for independent samples with equal variances.
Table 2
Mean daily ingestion of macronutrients* over the duration of the pilot trial

Patient Protein (g/d) Fat (g/d) Fiber (g/d)

1 79.9 � 28.4 62.5 � 23.5 9.2 � 2.3
2 81.0 � 17.5 65.6 � 18.9 14.4 � 6.7
3 65.9 � 12.0 63.2 � 14.7 7.1 � 2.9
4 92. 3 � 57.9 72.0 � 45.6 6.4 � 3.2
5 105.5 � 68.4 83.8 � 8.1 8.0 � 3.3
6 90.7 � 35.9 152.0 � 72.6 9.8 � 5.7
7 71.3 � 9.5 43.2 � 9.8 3.8 � 1.6
8 162.6 � 16.3 170.9 � 44.5 7.3 � 2.1
9 77.3 � 3.8 43.3 � 10.2 7.6 � 2.5

10 68.8 � 37.0 57.1 � 24.9 4.9 � 5.3
Mean � SEM 89.5 � 8.9 81.4 � 13.8 7.9 � 0.9

CHO, carbohydrate
* Macronutrient recall and total energy intake were calculated using Foodworks 11
y Estimated energy from carbohydrates ¼ 4.0 kcal/g.
For changes within each patient, the mean values of serum chemistries, total
calorie ingestion, and other variables during the trial were computed and
compared against baseline using paired t tests.

The FDG-PET scan response was categorized by prospective EORTC criteria
[72] as SD/PR or PD. Within these categories, mean BHB values, as the metric of
the metabolic effect of insulin, were compared using Student’s t tests. Associa-
tions between weekly insulin and corresponding weekly BHB, IGF-1, IGF-2, and
glucose values, after logarithmic transformation, were individually assessed
using linear regression analysis with a bootstrap resampling scheme with 1000
replications, allowing for within-individual correlation of measurements, to
estimate the variability of regression coefficients and construct bias-corrected
confidence intervals [75].

Results

Patient characteristics, dietary adherence, and adverse effects

Twelve patients with advanced cancer were recruited. For
reasons unrelated to the intervention, two patients discontinued
the study in less than 14 d and therefore were not evaluated. Of
these two patients, one withdrew because of symptomatic chest
wall disease on day 2 of the diet, requiring hospitalization and
chemotherapy; the second patient withdrew after 1 wk because
of clinical depression. The remaining 10 patients were included
in the results; of these, five patients completed all 28 d of the
trial, one patient completed 27 d, and four patients completed
26 d of the dietary intervention. Discontinuation before day 28
was due to progressive disease (n ¼ 1), a planned vacation
(n ¼ 1), a 1-d delayed start of the trial (n ¼ 1), refusal to eat meat
(n ¼ 1), and a dental abscess requiring extraction (n ¼ 1). In all
CHO (g/d) Energy intake (kcal/d)* Energy from
CHO (kcal/d)y

24.7 � 6.7 1144 � 297 98.8
36.1 � 11.4 1034 � 237 144.4
26.1 � 10.7 1115 � 183 104.4
27.5 � 22.8 1137 � 734 110.0
26.6 � 15.0 1282 � 410 106.4
29.9 � 10.6 1844 � 799 119.6
11.4 � 5.7 724 � 128 45.6
48.6 � 32.0 2397 � 520 194.4
21.0 � 4.1 784 � 84 84.0
17.7 � 9.6 898 � 349 70.8
27.0 � 3.2 1236 � 161 107.8 � 12.7

; all values are presented as mean � SEM during the trial.



Table 3
Physiologic effects of a low-carbohydrate diet

Patient Glucose
(mg/dL)

DWeight (kg) TEI (kcal) Predicted energy
(kcal) need (HB)y

Energy deficit
(%) ¼ 1 � TEI/HB

CHO/TEI
(kcal)

CHO/HB
(kcal)

Relative
ketosisz

PET scan
results (SUV)x

1 �13 �3.2 (�4.1%) 1144 � 297 1696 33% 8.6% 5.9% 2.1 � 1.9 PD (>30%)
2 þ3 �3.6 (�5.8%) 1034 � 237 1793 42% 14.0% 8.1% 23.3 � 14.2 PR (�16%)
3 �10 �2.9 (�4.5%) 1115 � 183 1430 22% 9.4% 7.3% 3.0 � 1.2 SD (NC)
4 þ6 �2.3 (�3.1%) 1137 � 734 1586 28% 9.7% 6.9% 2.7 � 1.2 PD (>25%)
5 þ1 �4.8 (�6.1%) 1282 � 410 1796 29% 8.3% 5.9% 13.9 � 6.8 SD (NC)
6 0 �3.2 (�3.1%) 1844 � 799 2663 31% 6.5% 4.5% 4.5 � 1.2 PD (>25%)
7 þ16 þ1.1 (þ2.5%) 724 � 128 1556 53% 6.3% 2.9% 15.4 � 11.8 SD (NC)
8 þ2 �2.9 (�4.2%) 2397 � 520 2565 7% 8.1% 7.6% 8.7 � 2.8 SD (NC)
9 �13 �5.4 (�5.6%) 784 � 84 1968 60% 10.7% 4.4% 12.0 � 4.5 PD (>30%)

10 �24 �2.7 (�4.0%) 898 � 349 1622 45% 7.9% 5.8% 23.5 � 8.2 SD (<25%)
Mean � SEM �3.2 � 3.7* �3.0 � 0.5 (�4.1 � 0.7%)* 1236 � 161 1868 � 132 35 � 4.9%k 9.0 � 0.7%k 5.9 � 0.5% 10.9 � 1.7k N/A

CHO, carbohydrate; D, change; HB, Harris–Benedict formula; N/A, not applicable; NC, 18F-2-fluoro, 2-deoxyglucose standardized uptake value change <10%; PD,
progressive disease; PET, positron emission tomographic; PR, partial remission; SD, stable disease; SUV, 18F-2-fluoro, 2-deoxyglucose standardized uptake value; TEI,
total energy intake

* Weight loss (P ¼ 0.08) compared with baseline; change in glucose (P ¼ 0.40).
y See text and Foster et al. [65].
z Relative ketosis ¼ mean b-hydroxybutyrate on protocol/baseline b-hydroxybutyrate.
x Positron emission tomographic findings are defined by the European Organization for Research and Treatment of Cancer criteria (see text and Nielsen and Joensson

[66]) and listed as the percentage of change in 18F-2-fluoro, 2-deoxyglucose standardized uptake values.
k P < 0.01 compared with baseline for mean energy deficit, percentage of total energy intake from carbohydrates, and relative ketosis.

Fig. 1. Change in mean BHB concentrations (millimoles per liter) between baseline
and the insulin-inhibition diet. All patients demonstrated ketosis from the diet.
BHB, b-hydroxybutyrate.
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patients who stopped the trial early, discontinuation was
explicitly patient-specific and unrelated to the adverse effects of
the diet itself.

The demographic characteristics of the 10 subjects who
completed the trial are presented in Table 1. Nine of 10 subjects
had pre-existing progressive disease by computed tomographic
scan and, in some cases, prior FDG-PET scans. The side effects
included grade 2 fatigue (n¼ 5), grade 1 constipation (n¼ 5), and
grade 1 leg cramps (n ¼ 1), which were reversible. No significant
electrolyte changes were observed except mild/moderate ketosis.
Renal function remained stable in all patients throughout the
trial, in no case showing worsening of serum creatinine or
calculated glomerular filtration rate (method of Cockcroft and
Gault [76]). Patient 9, the only subject with a calculated baseline
glomerular filtration rate below 60 (i.e., 51 mL/min), actually
showed an improvement to a glomerular filtration rate of 61
mL/min by the end of the study.

The daily consumption of macronutrient and energy intake
for each participant is presented in Table 2. CHO constituted
9.0 � 0.7% of actual calorie consumption (range 6.3–14.3%) and
5.9 � 0.5% of expected caloric requirements (range 2.9–7.6%;
Table 3) compared with our goal of a 5% dietary calorie intake. An
overall calorie decrease was observed in all patients and weight
loss in all but one.

Metabolic effects

The glucose concentration (mean � standard error of the
mean) decreased 3.2 � 3.7 mg/dL versus baseline (NS). The
mean final weight loss was 4.0 � 0.7% versus baseline (n ¼ 10).
Seven patients, six of whom were overweight, lost 4% to 6% of
their initial body weight,. Two patients lost 3% of baseline
weight, and one patients with a normal body mass index
remained weight stable. Weight loss was not judged harmful to
any participant.

Absolute BHB concentrations at baseline and mean dietary
values are displayed in Figure 1. A regression analysis adjusting
for correlated data indicated a significant direct and inverse
insulin effect on serum glucose and BHB, respectively, but not on
IGF-1 or IGF-2 (Table 4). Decreases in insulin by 75% to 90%
compared with baseline values were seen only in patients with
a 10- to 35-fold increase in ketosis (Fig. 2B). The mean physio-
logic data for the entire diet period (Table 3) demonstrated no
other significant correlations comparing ketosis or insulinemia
with changes in weight loss, percentage of calorie deficit, CHO
intake, total energy intake, CHO (kilocalories)/total energy
intake, or CHO (kilocalories)/predicted energy requirements.
FDG-PET scans before and after therapy versus metabolic effects

Four patients demonstrated continued PD, with increased
FDG-PET uptake and/or new metastatic lesions [72]. Six patients
had SD (n¼ 5) or PR (n¼ 1). One patient (patient 3, Table 1) with
incurable advanced disease nonetheless had a 14-y disease
course refusing all standard therapies, representing a disease
indolence of striking contrast with the other patients. Her PET
scan “stability” was therefore excluded from further analysis. In
patients with more aggressive cancers (n ¼ 9), the INSINH-
induced ketosis increased 17-fold (16.6 � 3.2) in those with
SD/PR (n¼ 5) versus a five-fold ketosis (5.1�1.9) in subjects with
continued PD (n ¼ 4, P ¼ 0.018; comparison in Fig. 2A). Similar
caloric deficits of 32.1�6.5% versus 38.0� 8.0% were seen in SD/



Table 4
Univariate regression of serum biomarkers on insulin

Markers Regression coefficient 95% CI P

BHB* �1.67* �2.97 to �0.02* 0.0258*
Glucose 0.16 0.06 to 0.24 0.0040
IGF-1 �0.10 �0.36 to 0.11 0.3843
IGF-2 �0.17 �0.45 to 0.07 0.2072

BHB, b-hydroxybutyrate; CI, confidence interval; IGF-1, insulin-like growth
factor-1; IGF-2, insulin-like growth factor-2

* An inverse relation between insulin secretion and b-hydroxybutyrate is
observed. The finding is limited by the dataset size and between-individual
variability and likely attributable to inconsistencies in diet compliance.
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PR versus PD response groups, respectively (P ¼ 0.81; Fig. 2C).
Weight loss of 4.0 � 1.6% versus 4.0% � 1.8% was seen in SD/PR
versus PD groups, respectively (P ¼ 0.45; Fig. 2D).

Discussion

The metabolic effects caused by the insulin inhibitory
response to CHO restriction may result in disease stabilization in
selected cancer types. Cancers cultured in glucose medium
Fig. 2. The data are from Table 3. (A) Metabolic response versus outcome: patients who
those with continued progressive disease (5.2 � 1.9) had a three-fold higher ketotic resp
Ketonemia versus insulinemia: the lowest insulinemia correlated with the highest keton
for each patient (numbered as in Table 3). (C) Calorie deficit versus outcome: the stabl
deficits (35% and 40%, respectively; P ¼ 0.81, NS). (D) Weight loss versus outcome: the sta
of weight loss (4.0% each compared with baseline weight; P ¼ 0.45, NS).
in vitro have been inhibited by supplemental ketone bodies [19,
51,53] and the inhibition of tumor growth in a xenograft model
has been associated with ketosis [56] and in non-ketotic rodent
models limiting CHO ingestion [53,54,58,59]. In human case
reports, glioblastoma demonstrated partial remission on
FDG-PET scan after a ketogenic diet for 8 wk in two children [55]
and 10 wk in an adult [77], in the latter case in conjunction with
standard chemotherapy. A restricted CHO diet in 16 subjects with
cancer was well tolerated in a 3-mo study performed at the
University of Wurzburg [69]. Based on these considerations, we
initiated a 4-wk pilot study to evaluate the safety and feasibility
of an insulin-inhibitory diet induced by CHO restriction in
patients with advanced cancer. Our findings showed the
approach to be feasible in our subjects, to result in ketosis
expected from decreased insulin levels, and to correlate with SD
or PR in subjects with the greatest extent of ketosis and PD in
those with the least ketosis.

We chose a 4-wk diet because of expected metabolic changes
and to detectable FDG PET scan effects. A substantial decrease in
tumor PET uptake may be seen within 1 wk of chemotherapy in
patients with lymphoma and gastrointestinal stromal tumors
[78–80]. CHO restriction at 5% of energy intake causes significant
demonstrated stable disease or partial remission (mean � SEM ¼ 16.6 � 3.2) versus
onse (* P ¼ 0.018). Patient 3 was excluded because of indolent disease (see text). (B)
emia levels, as physiologically expected. Uniquely colored symbols represent values
e disease/partial remission and progressive disease groups showed similar calorie
ble disease/partial remission and progressive disease groups showed similar degrees
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ketosis by 3 to 4 d in humans and is often associated with lower
serum insulin levels [46,81]. Serum BHB concentration was
chosen as a highly sensitive and specific means to detect strict
dietary compliance indicative of near-maximal insulin inhibition.
A 4-wk diet therefore was judged to be achievable, capable of
provoking a sustained, measurable metabolic change, and plau-
sibly eliciting a tumor response detectable using FDG-PET scan-
ning. SD/PR in only five subjects was not a remarkable finding for
a short study considering the variable course of even aggressive
cancers, but it is noteworthy that all subjects with SD/PR
exhibited high levels of ketosis, whereas the most blunted
ketosis was observed only in patients with continued PD.

Mechanistically, systemic ketosis in human brain cancers has
been proposed to provide selective benefits to normal brain
compared with cancerous tissue [55,57,77,82]. Our group’s
in vitro findings are consistent with a direct inhibition by ace-
toacetate of growth and adenosine triphosphate production by
an inefficient Randle cycle [19] in seven different cancer cell lines
but not in control fibroblasts. Other preclinical models also have
reported ketosis to be associated with suppressed tumor growth
[51,53,56,83] by a direct action or as an indicator signaling the
effects of maximal insulin inhibition.

The trial has several limitations. First, not all patients with
advanced cancer would be appropriate for this approach because
of comorbid medical conditions or general frailty, and these
results cannot be extrapolated to patients who are cachectic
without further study. Second, FDG avidity can identify a cancer’s
glucose dependence but is an insufficient marker to address that
cancer’s biologic vulnerability to CHO restriction. Third, FDG
uptake is dependent on GLUT-1 expression. Its use as a therapy
response marker may be questioned because GLUT-1 expression
or translocation may be downregulated by decreased insulin
secretion [50]. However, decreased GLUT-1 activity also speaks
to a decreased tumor nutrient supply. Fourth, as a pilot safety
and feasibility trial, the sample was small.

It is important to note that all 10 study participants sponta-
neously decreased their caloric intakes, nine of whom lost
weight, despite our best efforts to maintain a stable weight by
encouraging increased food consumption. Participants showed
a mean 35% caloric deficit and a 4% weight loss, raising the
question of whether caloric restriction played a role in our
findings. Ketosis has indeed been reported to suppress appetite
[84,85], perhaps contributing to the decreased calorie
consumption and the weight loss. The relation between CHO
restriction and calorie restriction, however, needs clarification.
Thirty percent to 40% caloric restriction, exactly spanning the
range we recorded for our subjects, has been proposed to
prevent cancer [86,87], to delay cancer onset [88], and poten-
tially to treat cancer [89,90]. Further, the metabolic similarities of
fasting to CHO restriction have long been reported [91,92].
Recently, chemotherapy toxicities have been reported to be
decreased in a cancer model in fasting mice [93]. Ten patients, in
a case report, fasted for 2 to 5 d before or after chemotherapy and
exhibited fewer side effects than when not fasted [94]. In our
study, neither calorie deficit nor weight loss correlated with the
PET scan response (Fig. 2C,D), insulin secretion, or ketosis.
Nonetheless, we cannot exclude a contributory role of calorie
restriction to our findings.

Recent studies also have supported an association of the
insulin/IGF axis with cancer recurrence, including breast and
colorectal cancers [15,95]. This suggests that an insulin-inhibition
diet may have value in conjunction with standard endocrine
therapy for patients with advanced hormone receptor-positive
breast cancer, pending further study. IGF-1 and IGF-2 have been
reported to show complex effects in CHO-restriction diets [96]. In
our study, these markers trended toward inverse correlations
with insulin concentrations, deserving further study.

This pilot study represents a prospective systematic evalua-
tion of a dietary macronutrient change, specifically CHO
restriction, as a potential adjunctive treatment for patients with
advanced cancer. The extent of the metabolic response of
subjects was consistent with the expected effects of insulin
inhibition with our hypothesis [18] and with data from preclin-
ical studies [19,51,53,56,83]. It is essential to unravel the mech-
anisms of CHO restriction through further in vitro and in vivo
investigations and to clarify the extent to which caloric restric-
tion and CHO restriction are related or independent effects [20,
21]. If confirmed in larger studies, dietary manipulation may
have the potential to be used as a complementary non-toxic
approach to improve the effectiveness of standard cytotoxic or
endocrine treatments in selected patients with cancer.

Conclusion

Insulin inhibition effected by dietary CHO restriction was
found safe and feasible in 10 patients with advanced cancer. The
three-fold higher ketosis, demonstrated in patients with SD or PR
compared with those with continued PD, must be interpreted
cautiously in this small pilot study.
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